Computing low-rank approximations of large-scale matrices with the Tensor Network randomized SVD

نویسندگان

  • Kim Batselier
  • Wenjian Yu
  • Luca Daniel
  • Ngai Wong
چکیده

We propose a new algorithm for the computation of a singular value decomposition (SVD) low-rank approximation of a matrix in the Matrix Product Operator (MPO) format, also called the Tensor Train Matrix format. Our tensor network randomized SVD (TNrSVD) algorithm is an MPO implementation of the randomized SVD algorithm that is able to compute dominant singular values and their corresponding singular vectors. In contrast to the state-of-the-art tensorbased alternating least squares SVD (ALS-SVD) and modified alternating least squares SVD (MALSSVD) matrix approximation methods, TNrSVD can be up to 17 times faster while achieving the same accuracy. In addition, our TNrSVD algorithm also produces accurate approximations in particular cases where both ALS-SVD and MALS-SVD fail to converge. We also propose a new algorithm for the fast conversion of a sparse matrix into its corresponding MPO form, which is up to 509 times faster than the standard Tensor Train SVD (TT-SVD) method while achieving machine precision accuracy. The efficiency and accuracy of both algorithms are demonstrated in numerical experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Subspace Iteration Randomization and Singular Value Problems

A classical problem in matrix computations is the efficient and reliable approximation of a given matrix by a matrix of lower rank. The truncated singular value decomposition (SVD) is known to provide the best such approximation for any given fixed rank. However, the SVD is also known to be very costly to compute. Among the different approaches in the literature for computing low-rank approxima...

متن کامل

A Randomized Tensor Train Singular Value Decomposition

The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors repres...

متن کامل

Estimating a Few Extreme Singular Values and Vectors for Large-Scale Matrices in Tensor Train Format

We propose new algorithms for singular value decomposition (SVD) of very large-scale matrices based on a low-rank tensor approximation technique called the tensor train (TT) format. The proposed algorithms can compute several dominant singular values and corresponding singular vectors for large-scale structured matrices given in a TT format. The computational complexity of the proposed methods ...

متن کامل

On the Tensor Svd and Optimal Low Rank Orthogonal Approximations of Tensors

Abstract. It is known that a high order tensor does not necessarily have an optimal low rank approximation, and that a tensor might not be orthogonally decomposable (i.e., admit a tensor SVD). We provide several sufficient conditions which lead to the failure of the tensor SVD, and characterize the existence of the tensor SVD with respect to the Higher Order SVD (HOSVD) of a tensor. In face of ...

متن کامل

Multi-Level Cluster Indicator Decompositions of Matrices and Tensors

A main challenging problem for many machine learning and data mining applications is that the amount of data and features are very large, so that low-rank approximations of original data are often required for efficient computation. We propose new multi-level clustering based low-rank matrix approximations which are comparable and even more compact than Singular Value Decomposition (SVD). We ut...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1707.07803  شماره 

صفحات  -

تاریخ انتشار 2017